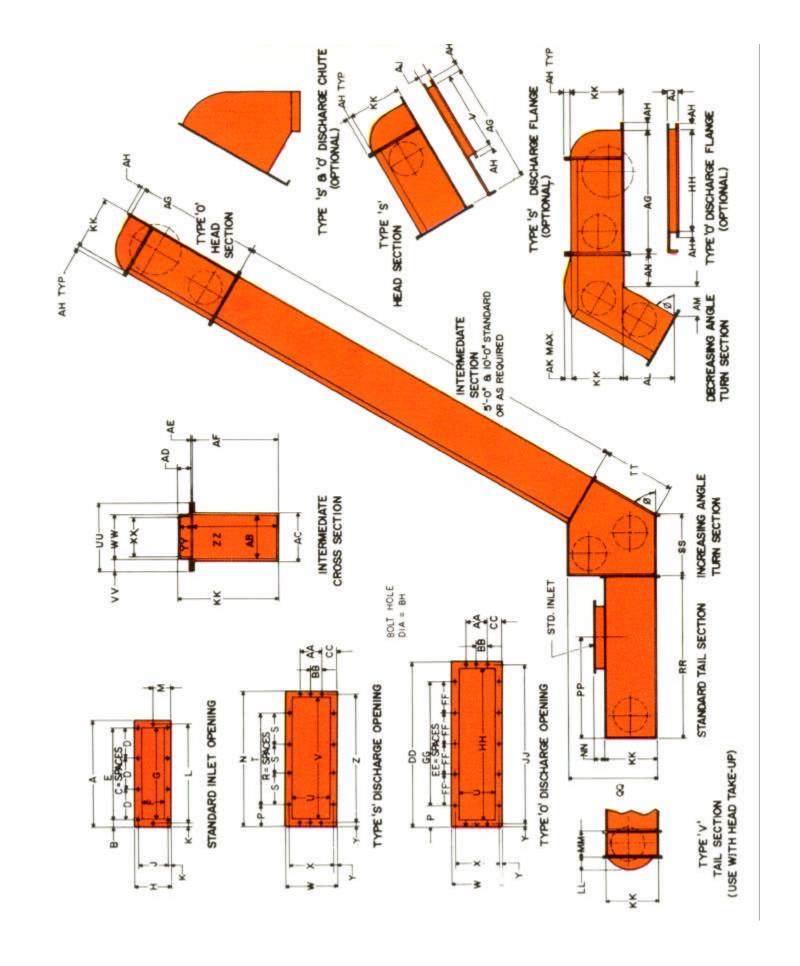

CamBelt High Incline Enclosed Belt Conveyors

On The Leading Edge Of High Incline Conveyor Technology

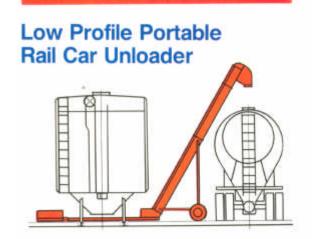
CamBelt...

What It Is

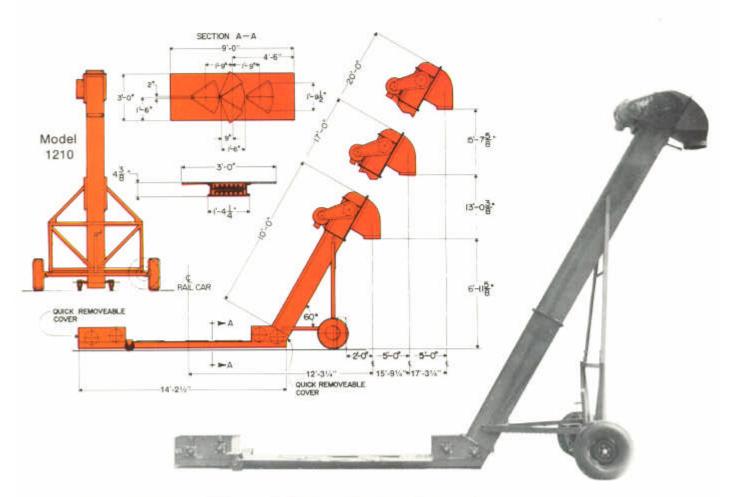

The CamBelt conveyor is a unique and versatile concept in belt conveyors - unique in that it is the only belt conveyor that can transport materials in a completely enclosed dust-tight system at any angle of incline; versatile in that a simple modular method of construction permits complete flexibility of design. By assembling various modular components. CamBelt provides a method of moving materials horizontally, on an incline, vertically, or through any required combination of planes and angles.

The CamBelt conveyor will move a wide variety of products, including pellets, granules, and very fine powders, at high capacities. The totally enclosed construction allows fine and dusty materials to be transported without contaminating your plant environment. It will elevate very fragile products with a minimum of degradation. Because of its design, it requires a minimum amount of space, and where head room is a factor the CamBelt conveyor solves many problems.

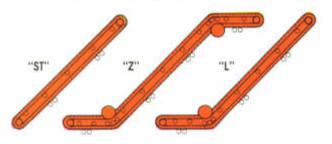
How It Operates


The prime mover in the CamBelt conveyor is a flexible rubber belt constructed in various sizes with flanges on either side and projections called "nubs" on the surface of the belt between the flanges, and the same height as the flanges (A). This endless belt is propelled through a rectangular metal tube (B) and (C) just larger than the cross section of the belt by passing over a head pulley (0), around turn pulleys (E) and (F) (when the angle of incline is changed) and around a tail pulley (G). The rubber nubs impart the motion of the belt into the material being conveyed and move it en masse from the point of inlet to the point of discharge. By overcoming the flow rate of any given material in this manner, products as flowable as water can be conveyed and elevated at inclines from horizontal to 90°.

Because of the unique construction of the belt, with flanges and nubs the same height, pulleys can operate on both the top and bottom so that both increasing (E) and decreasing (F) angle turns can be made. This allows the use of many configurations including L and Z shaped units. Slimline (low profile) (H) construction also is available which requires a very minimum amount of cube to be used where this is a critical factor.



Basic Dimensions (Inches)


7	O Luko	183	18	37.2											Ц	.,,			
>	mko	-101	-101	nko											П				
×	8 9	8	4 to	54	906	1	27	27	20	¥	Sky	mko	mlao	140					
*	64	0 10/4	10 10 10 10 10	17	38	4	212	212	\$ C							-06	8	8	9
>	õ	24	54	36	85	=	100	17 15	34	A	1	22	27	М		75	6	0	8
>	4 64	74	134	4	480	9 6	433	4 2000	283	AH	-	14	4	-k2	A	e0	10	0	20
H	12	92	8	30	0-30	1/100	2000	200	200	AG	A/R	3-0	3,-0,	2-0		•6	=	Ξ	22
တ	9	9	9	9	8	AR	O	4-0	2,-0	AF	88	in pa	100	24 4		30	12	12	24
œ	2	ю	ю	iO.	8	1	27	27	00	AE	14 GA	-100	-lœ	-100		•06	1	1	1
۵	4 16	4	44	4	9	A R	5-6	56	3-6	AD	_ko		rujeo	2 4		2	34	w p	7
z	8	262	262	39	ž	2 2	ю	ю	4	AC	4 50	74	134	4	AM	-09	-	82-	9
¥	2 10	m m	9	e de	¥	1	7	4	o	BB	4. iu/m	7	10	33		45	13 16	m	8
٦	4	00 104	Q	21.4	7	27	4	4	2	22	8 2	134	134	243		30	17.5	175	33,55
×	*****	-100	-10	- k ∨	ğ	76	100	100	27.8	77	nko	12	- <u>F</u> 2	243		-06	201	102	22
7	38	10 10 10 10 10	=	=	3	18 maps	312	31	50 504	×	4 w/m	49	12 2	24		-52	4	4	367
I	4 N(0	64	24	12.45	Ξ	24	30	30	40	*	4 9	8 104	12.4	5	٩	9	4	4,	288
9	4	8	8	50	99	81	24	24	84	>	-8	12	-	2	П	45	13 16	13 16	28.55
L	ю	4	0	0	44	9	9	9	9	20		93	15 15 15 15 15 15 15 15 15 15 15 15 15 1	11		30	0	0	197
ш	23	<u>@</u>	8	192	EE	ю	4	4	ω	06	12	- 27	- 27	200		80	63	10	7
٥	4	9	9	62	8	26g		- 322		- 22	-	23 5	23 8	2432				2 4	9
v	ю	ю	м	10	သ	3 6	2 4	2 8	10	9	100	218	2 2	2 40 32		.09	22	2 2	IIO
60			-	iopo	88	1	1	10	ĸ	46	13.52	25至21倍	21.5	415		45	24	24	4
4	in/kα	803	203	223	AA	1	4	0	0	0.30	ا الح	25.55	25/2 21 8	49		0.30	8	2	35
MODEL	405	610	1210	1220	MODEL	405	610	1210	1220	MODEL	405	610	1210	1220	MODEL	1	610	1210	1220

Typical CamBelt Conveyor Configurations

Typical CamBelt Conveyor Installations

- ▲ Model 1210 L Cambelt Conveyor
- ¥ Soda Ash truck to rail transfer

Typical Permanent Rail Car Underloader

A Typical Load in-Load out Installation

Your Authorized Cambelt Representative

2420 W. 1100 S., Salt Lake City, Utah 84104 Phone (801) 972-5511 Fax (801) 972-5522